DYMOND.sampling package¶
Submodules¶
DYMOND.sampling.generate_dynamic_graph module¶
- DYMOND.sampling.generate_dynamic_graph.create_igraph(gen_data, gen_data_dir)[source]¶
Create igraph.Graph object
- Parameters
gen_data (dict) – generated graph data
gen_data_dir (str) – directory for generated graph
- DYMOND.sampling.generate_dynamic_graph.dymond_generate(dataset_dir, num_timesteps)[source]¶
Run graph generation
- Parameters
dataset_dir (str) – dataset directory
dataset_name (str) – dataset name
num_timesteps (int) – number of timesteps to generate
- DYMOND.sampling.generate_dynamic_graph.estimate_motif_type_probs(triplets, role_distr, t)[source]¶
Estimate motif type probabilities for active triplets at time t.
- Parameters
triplets (list) – new active triplets at time t
role_distr (dict) – node role probabilities
t (int) – timestep
- Returns
motif type probabilities
- Return type
dict
- DYMOND.sampling.generate_dynamic_graph.generate_dynamic_graph(num_timesteps, length_timestep, num_nodes, node_rate, motif_props, role_distr, role_counts, type_counts, motif_type_rates, gen_data_dir)[source]¶
Generate dynamic graph.
- Parameters
num_timesteps (int) – number of timesteps to generate
length_timestep (int) – length of time
num_nodes (int) – number of nodes
node_rate (dict) – node arrival rate
motif_props (dict) – motif type proportions
role_distr (dict) – node role probabilities
role_counts (dict) – node role counts
type_counts (dict) – motif type counts
motif_type_rates (dict) – motif type inter-arrival rates
gen_data_dir (str) – directory for generated graph
- Returns
generated graph data
- Return type
dict
- DYMOND.sampling.generate_dynamic_graph.get_active_nodes(num_timesteps, length_timestep, num_nodes, node_rate, gen_dir)[source]¶
Get active notes.
- Parameters
num_timesteps (int) – number of timesteps
length_timestep (int) – length of timestep
num_nodes (int) – number of nodes
node_rate (dict) – node arrival rate
gen_dir (str) – directory for graph generation
- Returns
active nodes per timestep
- Return type
list
- DYMOND.sampling.generate_dynamic_graph.get_directories_generated_graph(dataset_dir)[source]¶
Get directories for model parameters and generated graph.
- Parameters
dataset_dir (str) – dataset directory
- Returns
directories for model parameters and generated graph
- Return type
str, str
- DYMOND.sampling.generate_dynamic_graph.get_generated_graph_data(gen_data_dir, num_timesteps, model_params)[source]¶
Generate graph data.
- Parameters
dataset_dir (str) – dataset directory
num_timesteps (int) – number of timesteps to generate
model_params (dict) – model parameters
- Returns
generated graph data
- Return type
dict
- DYMOND.sampling.generate_dynamic_graph.get_motif_edges(motifs, motif_types, roles_motifs, roles_assigned, t, gen_dir)[source]¶
Get motif edges
- Parameters
motifs (list) – motifs
motif_types (dict) – motif types
roles_motifs (dict) – node roles
roles_assigned (dict) – node roles assigned counts
t (int) – timestep
gen_dir (str) – directory for generated graph
- Returns
motif edges, node roles assigned
- Return type
dict, dict
- DYMOND.sampling.generate_dynamic_graph.get_parameters(params_dir)[source]¶
Get model parameters
- Parameters
params_dir (str) – parameters directory
- Returns
model parameters
- Return type
dict
- DYMOND.sampling.generate_dynamic_graph.get_role_distr(gen_dir, model_params)[source]¶
Get node role probabilities
- Parameters
gen_dir (str) – directory for generated graph
model_params (dict) – model parameters
- Returns
node role probabilities
- Return type
dict
- DYMOND.sampling.generate_dynamic_graph.helper_estimate_motif_type_probs(role_distr, motif, motif_type)[source]¶
- DYMOND.sampling.generate_dynamic_graph.helper_get_active_triplets(new_nodes, old_nodes, t, gen_dir, motifs_t)[source]¶
- DYMOND.sampling.generate_dynamic_graph.sample_motif_timesteps(num_timesteps, motifs, motif_type, motif_type_rates, t, gen_dir)[source]¶
Sample timesteps that the motifs will appear in.
- Parameters
num_timesteps (int) – number of timesteps to generate
motifs (dict) – motifs
motif_type (dict) – motif types
motif_type_rates (dict) – motif type inter-arrival rates
t (int) – timestep
gen_dir (str) – directory for generated graph
- Returns
motif timesteps and inter-arrival rates
- Return type
dict, dict
- DYMOND.sampling.generate_dynamic_graph.sample_motifs(new_nodes, old_nodes, motif_props, role_distr, role_counts, node_roles_assigned, type_counts, motif_type_rates, t, num_timesteps, gen_dir)[source]¶
Sample motifs from new active triplets at time t.
- Parameters
new_nodes (list) – new active nodes
old_nodes (list) – previous active nodes
motif_props (dict) – motif type proportions
role_distr (dict) – node role probabilities
role_counts (dict) – node role counts
node_roles_assigned (dict) – node roles assigned
type_counts (dict) – node motif type counts
motif_type_rates (dict) – motif type inter-arrival rates
t (int) – timestep
num_timesteps (int) – number of timesteps
gen_dir (str) – directory for generated graph
- Returns
data for motifs sampled at time t
- Return type
dict
- DYMOND.sampling.generate_dynamic_graph.sample_node_roles(motifs, motif_type, motif_timesteps, role_distr, role_counts, gen_dir, gen_dir_t, t)[source]¶
Sample node roles for motifs
- Parameters
motifs (list) – motifs
motif_type (dict) – motif types
motif_timesteps (dict) – timesteps motifs appear in
role_distr (dict) – node role probabilities
role_counts (dict) – node role counts
gen_dir (str) – directory for generated graph
gen_dir_t (str) – directory for graph snapshot t
t (int) – timestep
- Returns
node role probabilities, counts and roles in motifs
- Return type
dict, dict, dict
- DYMOND.sampling.generate_dynamic_graph.update_role_counts(role_counts, u, role_u, motif_timesteps)[source]¶
Update node role counts
- Parameters
role_counts (dict) – node role counts
u (int) – node to update counts for
role_u (str) – node u’s role
motif_timesteps (list) – timesteps motif appears in
- Returns
updated role counts
- Return type
dict
- DYMOND.sampling.generate_dynamic_graph.update_role_distr(nodes, role_distr, role_counts, gen_dir, t, gen_dir_t=None)[source]¶
Update node role probabilities
- Parameters
nodes (list) – nodes
role_distr (dict) – node role probabilities
role_counts (dict) – node role counts
gen_dir (str) – directory for generated graph
t (int) – timestep
gen_dir_t (str) – directory for generated graph snapshot t
- Returns
updated node role probabilities
- Return type
dict